Endpoints of multi-valued weakly contraction in complete metric spaces endowed with graphs
نویسندگان
چکیده
منابع مشابه
Approximation of endpoints for multi-valued mappings in metric spaces
In this paper, under some appropriate conditions, we prove some $Delta$ and strong convergence theorems of endpoints for multi-valued nonexpansive mappings using modified Agarwal-O'Regan-Sahu iterative process in the general setting of 2-uniformly convex hyperbolic spaces. Our results extend and unify some recent results of the current literature.
متن کاملEndpoints of multi-valued cyclic contraction mappings
Endpoint results are presented for multi-valued cyclic contraction mappings on complete metric spaces (X, d). Our results extend previous results given by Nadler (1969), Daffer-Kaneko (1995), Harandi (2010), Moradi and Kojasteh (2012) and Karapinar (2011).
متن کاملEndpoints of set-valued asymptotic contractions in metric spaces
By introducing a new concept called ‘‘set-valued asymptotic contraction’’ in metric spaces, the existence and uniqueness of endpoints for a set-valued asymptotic contraction which has the approximate endpoint property have been established. © 2010 Elsevier Ltd. All rights reserved.
متن کاملApproximate Endpoints for Set-Valued Contractions in Metric Spaces
The existence of approximate fixed points and approximate endpoints of the multivalued almost I-contractions is established. We also develop quantitative estimates of the sets of approximate fixed points and approximate endpoints for multivalued almost I-contractions. The proved results unify and improve recent results of Amini-Harandi 2010 , M. Berinde and V. Berinde 2007 , Ćirić 2009 , M. Păc...
متن کاملA RESULT ON FIXED POINTS FOR WEAKLY QUASI-CONTRACTION MAPS IN METRIC SPACES
In this paper, we give a new fixed point theorem forWeakly quasi-contraction maps in metric spaces. Our results extend and improve some fixed point and theorems in literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2017
ISSN: 0354-5180,2406-0933
DOI: 10.2298/fil1714319t